Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Res Sq ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38746232

RESUMEN

The development of subunit vaccines that mimic the molecular complexity of attenuated vaccines has been limited by the difficulty of intracellular co-delivery of multiple chemically diverse payloads at controllable concentrations. We report on hierarchical hydrogel depots employing simple poly(propylene sulfone) homopolymers to enable ratiometric loading of a protein antigen and four physicochemically distinct adjuvants in a hierarchical manner. The optimized vaccine consisted of immunostimulants either adsorbed to or encapsulated within nanogels, which were capable of noncovalent anchoring to subcutaneous tissues. These 5-component nanogel vaccines demonstrated enhanced humoral and cell-mediated immune responses compared to formulations with standard single adjuvant and antigen pairing. The use of a single simple homopolymer capable of rapid and stable loading and intracellular delivery of diverse molecular cargoes holds promise for facile development and optimization of scalable subunit vaccines and complex therapeutic formulations for a wide range of biomedical applications.

2.
Int J Biol Macromol ; : 132207, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723823

RESUMEN

To overcome the low efficacy of sonodynamic therapy (SDT) caused by hypoxia in the tumor microenvironment, we developed a multiple anti-tumor nanoplatform with synergistic SDT, photothermal therapy (PTT), and ferroptosis effects. PCN-224@FcCaO2/Mn/dihydroartemisinin/imiquimod/PDA (PFC) was prepared by modified with dihydroartemisinin (DHA), imiquimod (R837), CaO2, ferrocene (Fc) and Mn2+ on the PCN-224 (Cu) to achieve self-replenishment of H2O2/O2 and GSH consumption. FcCaO2 decomposed into H2O2 in the tumor microenvironment, triggering the Fenton effect to produce OH, and Cu2+ reduced the potential loss of OH by the depletion of GSH. Under ultrasonic (US) and laser irradiation, PFC exhibits exciting PTT and SDT effects from polydopamine (PDA) and PCN-224. Mn2+ not only promoted the reaction of H2O2 to produce O2 to effectively enhance SDT but also induced tumor cell apoptosis by Mn2+ combined with DHA. PFC induced ferroptosis via Fe interaction with DHA to produce ROS and reduce the expression of GPX4. The released R837 and tumor-associated antigens from SDT/PTT can produce damage associated molecular patterns (DAMPs), which can initiate adaptive immune responses to kill cancer cells, and released again to promote the tumor immune cycle. What's more, SDT/PTT and ferroptosis combined with aPD-L1 can effectively suppress both primary and distant tumor growth.

3.
J Chemother ; : 1-12, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706347

RESUMEN

Lung cancer is one of the most frequently diagnosed cancers worldwide, associated with a poor survival rate. Taxol (Paclitaxel) is commonly used as a chemotherapeutic treatment for advanced lung cancers. While Taxol has improved clinical outcomes for lung cancer patients, a significant number of them develop resistance to Taxol, resulting in treatment failure. The role of the long noncoding RNA HCG18 in lung cancer and Taxol resistance has not yet been fully understood. To investigate this, we examined the expression of HCG18 and miR-34a-5p in lung tumors and normal lung tissues using qRT-PCR. We also assessed Taxol resistance through cell viability and apoptosis assays. Through the starBase online service, we analyzed the interactions between lncRNA and mRNA as well as miRNA and mRNA. We further validated the association between lncRNA and miRNA through luciferase and RNA pull-down assays. Our findings demonstrated that HCG18 was significantly upregulated in lung cancer tissues compared to normal lung tissues. Silencing HCG18 increased the sensitivity of lung cancer cells to Taxol. Additionally, our study established a Taxol-resistant cell line and observed a substantial upregulation of HCG18 in Taxol-resistant lung cancer cells. Bioinformatic analysis predicted that HCG18 could bind to miR-34a-5p, forming a competing endogenous RNA network, which was confirmed through luciferase assay. We found that miR-34a-5p was downregulated in lung cancer tissues and negatively correlated with Taxol resistance, as it directly bound to the 3'UTR region of HDAC1. Further results showed that inhibition of HCG18 significantly increased miR-34a-5p expression and sensitized lung cancer cells to Taxol. This sensitization could be reversed by inhibiting miR-34a-5p. Finally, we demonstrated in a xenograft mouse model that inhibition of HCG18 sensitized Taxol-resistant lung cancer cells to Taxol treatment by modulating the miR-34a-5p-HDAC1 axis. In conclusion, our in vitro and in vivo results uncover a novel molecular mechanism by which HCG18 promotes Taxol resistance through modulation of the miR-34a-5p/HDAC1 axis. These findings contribute to the diagnosis and treatment of chemo-resistant lung cancer.

4.
Angew Chem Int Ed Engl ; : e202405620, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709194

RESUMEN

Manganese-based layered oxides are currently of significant interest as cathode materials for sodium-ion batteries due to their low toxicity and high specific capacity. However, the practical applications are impeded by sluggish intrinsic Na+ migration and poor structure stability as a result of Jahn-Teller distortion and complicated phase transition. In this study, a high-entropy strategy is proposed to enhance the high-voltage capacity and cycling stability. The designed P2-Na0.67Mn0.6Cu0.08Ni0.09Fe0.18Ti0.05O2 achieves a deeply desodiation and delivers charging capacity of 158.1 mA h g-1 corresponding to 0.61 Na with a high initial Coulombic efficiency of 98.2%. The charge compensation is attributed to the cationic and anionic redox reactions conjunctively. Moreover, the crystal structure is effectively stabilized, leading to a slight variation of lattice parameters. This research carries implications for the expedited development of low-cost, high-energy-density cathode materials for sodium-ion batteries.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38739862

RESUMEN

Polypropylene (PP) mesh is commonly used in repairing abdominal wall hernia (AWH). However, the use of synthetic prosthesis comes with the risk of developing a prosthetic infection, resulting in delayed healing, secondary surgery, and potentially increased mortality. To address these issues, a facile surface functionalization strategy for PP mesh based on phytic acid (PA) and polyhexamethylene guanidine (PHMG) was constructed through a one-step co-deposition process, referred to as the PA/PHMG coating. The development of PA/PHMG coating is mainly attributed to the surface affinity of PA and the electrostatic interactions between PA and PHMG. The PA/PHMG coating could be completed within 4 h under mild conditions. The prepared PA/PHMG coatings on PP mesh surfaces exhibited desirable biocompatibility toward mammalian cells and excellent antibacterial properties against the notorious "superbug" methicillin-resistant Staphylococcus aureus (MRSA) and tetracycline-resistant Escherichia coli (TRE). The PA/PHMG-coated PP meshes showed killing ratios of over 99% against MRSA in an infected abdominal wall hernia repair model. Furthermore, histological and immunohistochemical analysis revealed a significantly attenuated degree of neutrophil infiltration in the PA/PHMG coating group, attributed to the decreased bacterial numbers alleviating the inflammatory response at the implant sites. Meanwhile, the pristine PP and PA/PHMG-coated meshes showed effective tissue repair, with the PA/PHMG coating group exhibiting enhanced angiogenesis compared with pristine PP meshes, suggesting superior tissue restoration. Additionally, PP meshes with the highest PHMG weight ratio (PA/PHMG(3)) exhibited excellent long-term robustness under phosphate-buffered saline (PBS) immersion with a killing ratio against MRSA still exceeding 95% after 60 days of PBS immersion. The present work provides a facile and promising approach for developing antibacterial implants.

6.
Materials (Basel) ; 17(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38730785

RESUMEN

Liquid metal (LM) is widely used in flexible electronic devices due to its excellent metallic conductivity and ductility. However, the fabrication of LM flexible strain sensors with high sensitivity and linearity is still a huge challenge, since the resistance of LM does not change much with strain. Here, a highly sensitive and linear fully flexible strain sensor with a resistive sensing function is proposed. The sensor comprises an Fe-doped liquid metal (Fe-LM) electrode for enhanced performance. The design and manufacturing of flexible strain sensors are based on the technology of controlling surface wettability by femtosecond laser micro/nano-processing. A supermetalphobic microstructure is constructed on a polydimethylsiloxane (PDMS) substrate to achieve the selection adhesion of Fe-LM on the PDMS substrate. The Fe-LM-based flexible strain sensor has high sensitivity and linearity, a gauge factor (GF) up to 1.18 in the strain range of 0-100%, excellent linearity with an R2 of 0.9978, a fast response time of 358 ms, and an excellent durability of more than 2400 load cycles. Additionally, the successful monitoring of human body signals demonstrates the potential of our developed flexible strain sensor in wearable monitoring applications.

7.
Materials (Basel) ; 17(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612159

RESUMEN

Aqueous zinc-iodine batteries are considered to be one of the most promising devices for future electrical energy storage due to their low cost, high safety, high theoretical specific capacity, and multivalent properties. However, the shuttle effect currently faced by zinc-iodine batteries causes the loss of cathode active material and corrosion of the zinc anodes, limiting the large-scale application of zinc-iodine batteries. In this paper, the electrochemical processes of iodine conversion and the zinc anode, as well as the induced mechanism of the shuttle effect, are introduced from the basic configuration of the aqueous zinc-iodine battery. Then, the inhibition strategy of the shuttle effect is summarized from four aspects: the design of cathode materials, electrolyte regulation, the modification of the separator, and anode protection. Finally, the current status of aqueous zinc-iodine batteries is analyzed and recommendations and perspectives are presented. This review is expected to deepen the understanding of aqueous zinc-iodide batteries and is expected to guide the design of high-performance aqueous zinc-iodide batteries.

8.
J Org Chem ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669146

RESUMEN

Oxidative cross-coupling is a powerful strategy to form C-heteroatom bonds. However, oxidative cross-coupling for constructing C-S bond is still a challenge due to sulfur overoxidation and poisoning transition-metal catalysts. Now, electrochemical redox relay using sulfur radicals formed in situ from inorganic sulfur source offers a solution to this problem. Herein, electrochemical redox relay-induced C-S radical cross-coupling of quinoxalinones and ammonium thiocyanate with bromine anion as mediator is presented. The electrochemical redox relay comprised initially the formation of sulfur radical via indirect electrochemical oxidation, simultaneous electrochemical reduction of the imine bond, electro-oxidation-triggered radical coupling involving dearomatization-rearomatization, and the reformation of the imine bond through anodic oxidation. Applying this strategy, various quinoxalinones bearing multifarious electron-deficient/-rich substituents at different positions were well compatible with moderate to excellent yields and good steric hindrance compatibility under constant current conditions in an undivided cell without transition-metal catalysts and additional redox reagents. Synthetic applications of this methodology were demonstrated through gram-scale preparation and follow-up transformation. Notably, such a unique strategy may offer new opportunities for the development of new quinoxalinone-core leads.

9.
J Transl Med ; 22(1): 358, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627718

RESUMEN

BACKGROUND: Diabetic macular edema (DME) is a leading cause of vision loss in patients with diabetes. This study aimed to develop and evaluate an OCT-omics prediction model for assessing anti-vascular endothelial growth factor (VEGF) treatment response in patients with DME. METHODS: A retrospective analysis of 113 eyes from 82 patients with DME was conducted. Comprehensive feature engineering was applied to clinical and optical coherence tomography (OCT) data. Logistic regression, support vector machine (SVM), and backpropagation neural network (BPNN) classifiers were trained using a training set of 79 eyes, and evaluated on a test set of 34 eyes. Clinical implications of the OCT-omics prediction model were assessed by decision curve analysis. Performance metrics (sensitivity, specificity, F1 score, and AUC) were calculated. RESULTS: The logistic, SVM, and BPNN classifiers demonstrated robust discriminative abilities in both the training and test sets. In the training set, the logistic classifier achieved a sensitivity of 0.904, specificity of 0.741, F1 score of 0.887, and AUC of 0.910. The SVM classifier showed a sensitivity of 0.923, specificity of 0.667, F1 score of 0.881, and AUC of 0.897. The BPNN classifier exhibited a sensitivity of 0.962, specificity of 0.926, F1 score of 0.962, and AUC of 0.982. Similar discriminative capabilities were maintained in the test set. The OCT-omics scores were significantly higher in the non-persistent DME group than in the persistent DME group (p < 0.001). OCT-omics scores were also positively correlated with the rate of decline in central subfield thickness after treatment (Pearson's R = 0.44, p < 0.001). CONCLUSION: The developed OCT-omics model accurately assesses anti-VEGF treatment response in DME patients. The model's robust performance and clinical implications highlight its utility as a non-invasive tool for personalized treatment prediction and retinal pathology assessment.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Humanos , Inhibidores de la Angiogénesis/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Retinopatía Diabética/diagnóstico por imagen , Retinopatía Diabética/tratamiento farmacológico , Inyecciones Intravítreas , Aprendizaje Automático , Edema Macular/complicaciones , Edema Macular/diagnóstico por imagen , Edema Macular/tratamiento farmacológico , Radiómica , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos , Factores de Crecimiento Endotelial Vascular
10.
Artículo en Inglés | MEDLINE | ID: mdl-38646812

RESUMEN

Post-exercise reduction in blood pressure, termed post-exercise hypotension (PEH), is relevant for both acute and chronic health reasons and potentially for peripheral cardiovascular adaptations. We investigated the interactive effects of exercise intensity and recovery postures (seated, supine, and standing) on PEH. Thirteen normotensive men underwent a VO2max test on a cycle ergometer and 5 exhaustive constant load trials to determine critical power (CP) and the gas exchange threshold (GET). Subsequently, work-matched exercise trials were performed at two discrete exercise intensities (10% > CP and 10% < GET), with one hour of recovery in each of three postures. For both exercise intensities, standing posture resulted in a more substantial PEH (all P < 0.01). For both standing and seated recovery postures, the higher exercise intensity led to larger reductions in systolic, diastolic and mean arterial pressures (all P < 0.01), whereas in the supine recovery posture, the reduction in diastolic and mean arterial pressures was unaffected by prior exercise intensity (both P > 0.05). PEH is more pronounced during recovery from exercise performed above critical power versus below GET. However, the effect of exercise intensity on PEH is largely abolished when recovery is performed in the supine posture.

11.
Adv Mater ; : e2403765, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593813

RESUMEN

Zinc metal suffers from violent and long-lasting water-induced side reactions and uncontrollable dendritic Zn growth, which seriously reduce the coulombic efficiency (CE) and lifespan of aqueous zinc-metal batteries (AZMBs). To suppress the corresponding harmful effects of the highly active water, a stable zirconium-based metal-organic framework with water catchers decorated inside its sub-nano channels is used to protect Zn-metal. Water catchers within narrow channels can constantly trap water molecules from the solvated Zn-ions and facilitate step-by-step desolvation/dehydration, thereby promoting the formation of an aggregative electrolyte configuration, which consequently eliminates water-induced corrosion and side reactions. More importantly, the functionalized sub-nano channels also act as ion rectifiers and promote fast but even Zn-ions transport, thereby leading to a dendrite-free Zn metal. As a result, the protected Zn metal demonstrates an unprecedented cycling stability of more than 10 000 h and an ultra-high average CE of 99.92% during 4000 cycles. More inspiringly, a practical NH4V4O10//Zn pouch-cell is fabricated and delivers a capacity of 98 mAh (under high cathode mass loading of 25.7 mg cm-2) and preserves 86.2% capacity retention after 150 cycles. This new strategy in promoting highly reversible Zn metal anodes would spur the practical utilization of AZMBs.

12.
J Neural Eng ; 21(2)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38565100

RESUMEN

Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals.Approach. To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data.Main results. To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods.Significance. Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje , Electroencefalografía , Imágenes en Psicoterapia , Redes Neurales de la Computación , Algoritmos
13.
Trials ; 25(1): 287, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679725

RESUMEN

BACKGROUND: Neovascular glaucoma (NVG) is an irreversible blinding eye disease worldwide and is classified as one of the refractory glaucoma conditions, severely impacting visual function and vision. Unfortunately, effective surgical interventions to improve the prognosis of NVG patients are currently lacking. The study aims to evaluate the efficacy and safety of anterior chamber proliferative membrane interception (AC-PMI)-enhanced trabeculectomy compared to the traditional trabeculectomy. METHODS: AC-PMI enhanced trabeculectomy versus trabeculectomy for the treatment of NVG is a single-center, prospective, double-arms, and randomized controlled trial of superior efficacy, which will involve 100 NVG inpatients. Patients will be randomly assigned into two groups using the random number table method. One group will undergo trabeculectomy using anti-vascular endothelial growth factor (Anti-VEGF) preoperatively and mitomycin C intraoperatively, while the other group will undergo AC-PMI enhanced trabeculectomy with the same medications (Anti-VEGF and mitomycin C). The patients will be followed up at the baseline and 1 day, 1 week, 1 month, 3 months, 6 months, 12 months, 18 months, and 24 months postoperatively. Meanwhile, we will collect the demographics, characteristics, and examination results and monitor any occurrences of adverse events at each follow-up time. DISCUSSION: This is an efficacy study of a novel surgical approach for treating neovascular glaucoma. Building upon conventional filtering surgeries, this approach introduces an additional step involving the interception of the proliferative membrane to effectively halt the growth of fibrovascular tissue. This study aims to explore a promising new surgical approach for managing NVG and contribute to the advancement of glaucoma treatment strategies. TRIAL REGISTRATION: ChiCTR ChiCTR2200055138. Registered on 01 January 2022. https://www.chictr.org.cn/showproj.html?proj=145255.


Asunto(s)
Glaucoma Neovascular , Ensayos Clínicos Controlados Aleatorios como Asunto , Trabeculectomía , Factor A de Crecimiento Endotelial Vascular , Humanos , Trabeculectomía/métodos , Trabeculectomía/efectos adversos , Glaucoma Neovascular/cirugía , Glaucoma Neovascular/fisiopatología , Estudios Prospectivos , Resultado del Tratamiento , Persona de Mediana Edad , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Anciano , Femenino , Masculino , Adulto , Cámara Anterior/cirugía , Presión Intraocular , Mitomicina/uso terapéutico , Mitomicina/administración & dosificación , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/administración & dosificación , Adulto Joven
14.
Nanoscale Horiz ; 9(5): 667-674, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38497316

RESUMEN

The traditional working principle within lithium-ion batteries relies on Li+ shuttling between the cathode and anode, namely the rocking-chair mechanism. A single working ion constrains the possibilities for battery design and the selection of electrode materials, while realizing multiple working ions offers the potential to break through the fundamental principles of traditional battery construction. Accordingly, it is necessary to develop dual-ion conductors to enable the migration of multiple working ions. This focus article starts by introducing traditional dual-ion batteries based on liquid electrolytes and their pros and cons. Then, solidifying liquid dual-ion conductors is expected to overcome these drawbacks, so the development of solid dual-ion conductors is discussed in detail. Specifically, basic design principles of solid dual-ion conductors are briefly proposed, including constructing continuous ion transport channels and choosing appropriately sized ion carriers. The potential applications of solid dual-ion conductors are also summarized, such as stabilizing the electrode/electrolyte interface and activating additional redox couples. The goal of this article is to inspire researchers in the development of dual-ion conductors and to contribute to the advancement of all-solid-state batteries.

15.
J Cell Physiol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38515383

RESUMEN

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attribute to the aggressive local invasion, distant metastasis and drug resistance of PDAC patients, which was strongly accelerated by epithelial-mesenchymal transition (EMT). In current study, we systematically investigate the role of ZNF263/RNF126 axis in the initiation of EMT in PDAC in vitro and vivo. ZNF263 is firstly identified as a novel transactivation factor of RNF126. Both ZNF263 and RNF126 were overexpressed in PDAC tissues, which were associated with multiple advanced clinical stages and poor prognosis of PDAC patients. ZNF263 overexpression promoted cell proliferation, drug resistance and EMT in vitro via activating RNF126 following by the upregulation of Cyclin D1, N-cad, and MMP9, and the downregulation of E-cad, p21, and p27. ZNF263 silencing contributed to the opposite phenotype. Mechanistically, ZNF263 transactivated RNF126 via binding to its promoter. Further investigations revealed that ZNF263 interacted with ZNF31 to coregulate the transcription of RNF126, which in turn promoted ubiquitination-mediated degradation of PTEN. The downregulation of PTEN activated AKT/Cyclin D1 and AKT/GSK-3ß/ß-catenin signaling, thereby promoting the malignant phenotype of PDAC. Finally, the coordination of ZNF263 and RNF126 promotes subcutaneous tumor size and distant liver metastasis in vivo. ZNF263, as an oncogene, promotes proliferation, drug resistance and EMT of PDAC through transactivating RNF126.

16.
J Huntingtons Dis ; 13(1): 67-76, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489192

RESUMEN

Background: Huntington's disease (HD) is an autosomal dominant, neurodegenerative disease that involves dysfunction in the autonomic nervous system (ANS). Heart rate variability (HRV) is a valid and noninvasive measure for ANS dysfunction, yet no study has characterized HRV response to exercise in people with HD. Objective: Characterize HRV response to exercise in individuals with HD and explore its implications for exercise prescription and cardiac dysautonomia mechanisms. Methods: 19 participants with HD were recruited as part of a cohort of individuals enrolled in the Physical Activity and Exercise Outcomes in Huntington's Disease (PACE-HD) study at Teachers College, Columbia University (TC). 13 non-HD age- and gender-matched control participants were also recruited from TC. HRV was recorded with a Polar H10 heart rate (HR) monitor before, during, and after a ramp cycle-ergometer exercise test. Results: Participants with HD showed reduced HR peak (p < 0.01) and HR reserve (p < 0.001) compared with controls. Participants with HD demonstrated reduced root mean square of successive differences between normal-to-normal intervals (RMSSD) and successive differences of normal-to-normal intervals (SDSD) at rest (p < 0.001). Participants with HD also showed differences for low frequency (LF) power (p < 0.01), high frequency (HF) normalized units (nu) (p < 0.05), LF (nu) (p < 0.001), and HF/LF ratio (p < 0.05) compared with controls. Conclusions: We found reduced aerobic exercise capacity and sympathovagal dysautonomia both at rest and during post-exercise recovery in people with HD, suggesting modified exercise prescription may be required for people with HD. Further investigations focusing on cardiac dysautonomia and underlying mechanisms of sympathovagal dysautonomia in people with HD are warranted.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Prueba de Esfuerzo , Frecuencia Cardíaca/fisiología
17.
Angew Chem Int Ed Engl ; 63(21): e202402833, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38535776

RESUMEN

Aqueous zinc-metal batteries (AZMBs) usually suffered from poor reversibility and limited lifespan because of serious water induced side-reactions, hydrogen evolution reactions (HER) and rampant zinc (Zn) dendrite growth. Reducing the content of water molecules within Zn-ion solvation sheaths can effectively suppress those inherent defects of AZMBs. In this work, we originally discovered that the two carbonyl groups of N-Acetyl-ϵ-caprolactam (N-ac) chelating ligand can serve as dual solvation sites to coordinate with Zn2+, thereby minimizing water molecules within Zn-ion solvation sheaths, and greatly inhibit water-induced side-reactions and HER. Moreover, the N-ac chelating additive can form a unique physical barrier interface on Zn surface, preventing the harmful contacting with water. In addition, the preferential adsorption of N-ac on Zn (002) facets can promote highly reversible and dendrite-free Zn2+ deposition. As a result, Zn//Cu half-cell within N-ac added electrolyte delivered ultra-high 99.89 % Coulombic efficiency during 8000 cycles. Zn//Zn symmetric cells also demonstrated unprecedented long life of more than 9800 hours (over one year). Aqueous Zn//ZnV6O16 ⋅ 8H2O (Zn//ZVO) full-cell preserved 78 % capacity even after ultra-long 2000 cycles. A more practical pouch-cell was also obtained (90.2 % capacity after 100 cycles). This method offers a promising strategy for accelerating the development of highly efficient AZMBs.

18.
J Am Chem Soc ; 146(11): 7274-7287, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38377953

RESUMEN

The utilization of anionic redox chemistry provides an opportunity to further improve the energy density of Li-ion batteries, particularly for Li-rich layered oxides. However, oxygen-based hosts still suffer from unfavorable structural rearrangement, including the oxygen release and transition metal (TM)-ion migration, in association with the tenuous framework rooted in the ionicity of the TM-O bonding. An intrinsic solution, by using a sulfur-based host with strong TM-S covalency, is proposed here to buffer the lattice distortion upon the highly activating sulfur redox process, and it achieves howling success in stabilizing the host frameworks. Experimental results demonstrate the prolonged preservation of the layered sulfur lattice, especially the honeycomb superlattice, during the Li+ extraction/insertion process in contrast to the large structural degeneration in Li-rich oxides. Moreover, the Li-rich sulfide cathodes exhibited a negligible overpotential of 0.08 V and a voltage drop of 0.13 mV/cycle, while maintaining a substantial reversible capacity upon cycling. These superior electrochemical performances can be unambiguously ascribed to the much shorter trajectories of sulfur in comparison to those of oxygen revealed by molecular dynamics simulations at a large scale (∼30 nm) and a long time scale (∼300 ps) via high-dimensional neural network potentials during the delithiation process. Our findings highlight the importance of stabilizing host frameworks and establish general guidance for designing Li-rich cathodes with durable anionic redox chemistry.

19.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167050, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38331110

RESUMEN

HNRNPA2B1 and HNRNPR stabilize ASCL1 mRNA in neuroblastoma, but whether their regulatory effects depend on m6A modification and whether their function involves ASCL1 remain unknown. This study investigated the m6A-dependent binding of HNRNPA2B1 and HNRNPR to ASCL1 and subsequent regulation, as well as the expression, clinical significance, and function of HNRNPA2B1 and HNRNPR in neuroblastoma. We revealed that METTL14 mediated ASCL1 m6A modification to stabilize ASCL1. HNRNPA2B1 and HNRNPR significantly enriched ASCL1 mRNA by binding to the 5' and 3' untranslated regions, respectively, and METTL14 knockdown reduced this enrichment. Mutations in m6A sites in the untranslated regions of ASCL1 mRNA considerably decreased probe capacity to engage HNRNPA2B1 and HNRNPR. HNRNPR interacts with IGF2BP1, and knocking down either impaired binding to ASCL1 mRNA. HNRNPA2B1 and HNRNPR knockdown suppressed neuroblastoma cell growth and invasion, while ASCL1 overexpression restored these effects. The high HNRNPA2B1 and HNRNPR expression in neuroblastoma correlated with ASCL1 expression. Thus, HNRNPA2B1 and HNRNPR bind and stabilize ASCL1 mRNA in an m6A-dependent manner to promote neuroblastoma progression. This study not only discovered a new mechanism underlying the high ASCL1 expression in neuroblastoma but also identified the HNRNPA2B1/HNRNPR/ASCL1 axis as a promising target for inhibiting neuroblastoma progression.


Asunto(s)
Adenina/análogos & derivados , Neuroblastoma , Humanos , Neuroblastoma/genética , Regiones no Traducidas 3' , ARN Mensajero/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ribonucleoproteínas Nucleares Heterogéneas
20.
Gut Microbes ; 16(1): 2323237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411391

RESUMEN

The gut microbiome is known as the tenth system of the human body that plays a vital role in the intersection between health and disease. The considerable inter-individual variability in gut microbiota poses both challenges and great prospects in promoting precision medicine in cardiovascular diseases (CVDs). In this review, based on the development, evolution, and influencing factors of gut microbiota in a full life circle, we summarized the recent advances on the characteristic alteration in gut microbiota in CVDs throughout different life stages, and depicted their pathological links in mechanism, as well as the highlight achievements of targeting gut microbiota in CVDs prevention, diagnosis and treatment. Personalized strategies could be tailored according to gut microbiota characteristics in different life stages, including gut microbiota-blood metabolites combined prediction and diagnosis, dietary interventions, lifestyle improvements, probiotic or prebiotic supplements. However, to fulfill the promise of a lifelong cardiovascular health, more mechanism studies should progress from correlation to causality and decipher novel mechanisms linking specific microbes and CVDs. It is also promising to use the burgeoning artificial intelligence and machine learning to target gut microbiota for developing diagnosis system and screening for new therapeutic interventions.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Humanos , Medicina de Precisión , Enfermedades Cardiovasculares/terapia , Inteligencia Artificial , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA